در محیطهای مدرن SaaS، جمعآوری شواهد حسابرسی یکی از زمانبرترین کارها برای تیمهای امنیت و انطباق است. این مقاله توضیح میدهد چگونه هوش مصنوعی مولد میتواند دادههای خام سیستمتلومتری را به آرشیوهای شواهد آماده برای استفاده—مانند برشهای لاگ، اسنپشاتهای پیکربندی و تصاویر صفحه—بدون تعامل انسانی تبدیل کند. با یکپارچهسازی خطوط لوله مبتنی بر هوش مصنوعی با استکهای مانیتورینگ موجود، سازمانها میتوانند «تولید شواهد بدون لمس» را بهدست آورند، زمان پاسخ به پرسشنامهها را شتاب دهند و وضعیت انطباقی مستمری داشته باشند که بهصورت پیوسته قابل حسابرسی است.
این مقاله بهعمق به استراتژیهای مهندسی پرامپت میپردازد که باعث میشود مدلهای زبان بزرگ پاسخهای دقیق، ثابت و قابل حسابرسی برای پرسشنامههای امنیتی تولید کنند. خوانندگان خواهند آموخت چگونه پرامپتها را طراحی کنند، زمینه سیاستی را جاسازی کنند، خروجیها را اعتبارسنجی کنند و جریان کار را در پلتفرمهایی مانند Procurize یکپارچهسازی نمایند تا پاسخهای سازگار، سریع و بدون خطا ارائه دهند.
در محیطی که فروشندگان با دهها پرسشنامه امنیتی در چارچوبهای مختلفی مانند SOC 2، ISO 27001، GDPR و CCPA مواجه هستند، تولید شواهد دقیق و مبتنی بر زمینه به سرعت یک نقطهٔ فشار بزرگ است. این مقاله معماری هوش مصنوعی مولد هدایتشده توسط انتولوژی را معرفی میکند که اسناد سیاست، artefacts کنترل و لاگهای حادثه را به قطعههای شواهد سفارشی برای هر سؤال مقرراتی تبدیل میسازد. با ترکیب یک گراف دانش حوزه‑خاص با مدلهای زبان بزرگ مهندسی‑پرامپت، تیمهای امنیتی قادر به پاسخهای زمان‑واقعی و قابلحسابرسی میشوند، در حالی که یکپارچگی تطبیق حفظ شده و زمان انتظار بهطور چشمگیری کاهش مییابد.
