سازمانها برای هماهنگ نگه داشتن پاسخهای پرسشنامههای امنیتی با سیاستهای داخلی که به سرعت تغییر میکند و مقررات خارجی، با مشکل مواجه هستند. گراف دانش مبتنی بر هوش مصنوعی Procurize بهطور مستمر اسناد سیاستی را نقشهبرداری میکند، درهروی را شناسایی مینماید و هشدارهای زمان واقعی را به تیمهای پرسشنامه میفرستد. این مقاله مشکل درهروی، معماری زیرساخت گراف، الگوهای یکپارچهسازی و فواید قابلاندازهگیری را برای فروشندگان SaaS که به دنبال پاسخهای انطباق سریعتر و دقیقتر هستند، توضیح میدهد.
این مقاله به بررسی یک موتور جدید هماهنگی شواهد زمان واقعی مبتنی بر هوش مصنوعی میپردازد که بهصورت مستمر تغییرات سیاستها را هماهنگ میکند، مدرکهای مرتبط را استخراج میکند و پاسخهای پرسشنامههای امنیتی را بهصورت خودکار پر میکند، سرعت، دقت و قابلیت حسابرسی را برای فروشندگان مدرن SaaS فراهم میآورد.
تیمهای خرید و امنیت معمولاً با شواهد قدیمی و پاسخهای ناسازگار به پرسشنامهها مواجهند. این مقاله توضیح میدهد که چگونه Procurize AI با استفاده از یک گراف دانش دائماً بهروز شده که توسط «تولید افزایشی بازیابی» (RAG) تقویت شده، پاسخها را بهصورت لحظهای بهروزرسانی و اعتبارسنجی میکند؛ در نتیجه کار دستی کاهش مییابد و دقت و قابلیت حسابرسی افزایش مییابد.
این مقاله به بررسی چگونگی بهرهگیری Procurize از یادگیری فدرال برای ایجاد یک پایگاه دانش تطبیقپذیری مشترک و حفظ حریمخصوصی میپردازد. با آموزش مدلهای هوش مصنوعی روی دادههای توزیعشده در میان شرکتها، سازمانها میتوانند دقت پرسشنامهها را بهبود بخشند، زمان واکنش را تسریع کنند و حاکمیت دادهها را حفظ کرده و در عین حال از هوش جمعی بهرهمند شوند.
