این مقاله به بررسی معماری نوین مهندسی پرسش مبتنی بر انتولوژی میپردازد که چارچوبهای مختلف پرسشنامه امنیتی نظیر [SOC 2](https://secureframe.com/hub/soc-2/what-is-soc-2)، [ISO 27001](https://www.iso.org/standard/27001) و [GDPR](https://gdpr.eu/) را همسو میکند. با ساخت یک گراف دانش پویا از مفاهیم قانونی و بهرهگیری از قالبهای هوشمند پرسش، سازمانها میتوانند پاسخهای AI سازگار و قابل حسابرسی برای استانداردهای متعدد تولید کنند، زمان صرف شده برای کارهای دستی را کاهش داده و اطمینان از انطباق را ارتقاء دهند.
در محیطی که فروشندگان با دهها پرسشنامه امنیتی در چارچوبهای مختلفی مانند SOC 2، ISO 27001، GDPR و CCPA مواجه هستند، تولید شواهد دقیق و مبتنی بر زمینه به سرعت یک نقطهٔ فشار بزرگ است. این مقاله معماری هوش مصنوعی مولد هدایتشده توسط انتولوژی را معرفی میکند که اسناد سیاست، artefacts کنترل و لاگهای حادثه را به قطعههای شواهد سفارشی برای هر سؤال مقرراتی تبدیل میسازد. با ترکیب یک گراف دانش حوزه‑خاص با مدلهای زبان بزرگ مهندسی‑پرامپت، تیمهای امنیتی قادر به پاسخهای زمان‑واقعی و قابلحسابرسی میشوند، در حالی که یکپارچگی تطبیق حفظ شده و زمان انتظار بهطور چشمگیری کاهش مییابد.
