این مقاله توضیح میدهد که چگونه هوش مصنوعی دادههای خام پرسشنامههای امنیتی را به نمرهٔ اعتماد کمی تبدیل میکند و به تیمهای امنیت و خرید کمک میکند تا ریسکها را اولویتبندی، ارزیابیها را سرعت بخشند و شواهد آمادهٔ حسابرسی را حفظ کنند.
این مقاله به بررسی رویکرد نوینی میپردازد که در آن یک نمودار دانش تقویتشده با هوش مصنوعی مولد، بهطور مستمر از تعاملات پرسشنامهها یاد میگیرد و پاسخها و شواهد دقیق و آنی ارائه میدهد، در حالی که قابلیت حسابرسی و انطباق را حفظ میکند.
سازمانها برای هماهنگ نگه داشتن پاسخهای پرسشنامههای امنیتی با سیاستهای داخلی که به سرعت تغییر میکند و مقررات خارجی، با مشکل مواجه هستند. گراف دانش مبتنی بر هوش مصنوعی Procurize بهطور مستمر اسناد سیاستی را نقشهبرداری میکند، درهروی را شناسایی مینماید و هشدارهای زمان واقعی را به تیمهای پرسشنامه میفرستد. این مقاله مشکل درهروی، معماری زیرساخت گراف، الگوهای یکپارچهسازی و فواید قابلاندازهگیری را برای فروشندگان SaaS که به دنبال پاسخهای انطباق سریعتر و دقیقتر هستند، توضیح میدهد.
این مقاله یک هماهنگکننده هوش مصنوعی صفر‑اعتماد را معرفی میکند که بهصورت پیوسته چرخهحیات شواهد برای پرسشنامههای امنیتی را مدیریت میکند. با ترکیب اعمال سیاستهای غیرقابل تغییر، مسیردهی هوش مصنوعی و اعتبارسنجی زمان واقعی، این راهحل تلاش دستی را کاهش داده، قابلیت حسابرسی را ارتقا میدهد و سطح اعتماد به برنامههای ریسک فروشنده را افزایش میدهد.
این مقاله به بررسی نقش نوظهور هوش مصنوعی توضیحپذیر (XAI) در خودکارسازی پاسخهای پرسشنامههای امنیتی میپردازد. با نشان دادن دلایل پشت پاسخهای تولید شده توسط هوش مصنوعی، XAI شکاف اعتماد بین تیمهای انطباق، حسابرسان و مشتریان را پر میکند، در حالی که سرعت، دقت و یادگیری مستمر را حفظ میکند.
