מאמר זה בוחן את השילוב המתפתח בין הוכחות ללא ידיעת (ZKP) לבינה מלאכותית גנרטיבית ליצירת מנוע שמירה על פרטיות, המראה סימן מניעת זיוף, לאוטומציה של שאלוני אבטחה וציות. הקוראים ילמדו על מושגים קריפטוגרפיים מרכזיים, אינטגרציית זרימת העבודה של AI, שלבי יישום מעשיים, והיתרונות המעשיים כגון הפחתת חיכוך בביקורות, שיפור סודיות הנתונים, והוכחת שלמות התשובות.
מאמר זה חוקר ארכיטקטורת דור‑הרחבה משופרת (RAG) היברידית חדשה המשלבת מודלים גדולים של שפה (LLM) עם ארכיון מסמכי ארגון ברמת תעשייה. על‑ידי חיבור חזק של סינתזת תשובות מונעת‑בינה מלאכותית עם מסלולי ביקורת בלתי ניתנים לשינוי, ארגונים יכולים לאוטומט שאלונים אבטחתיים תוך שמירת ראיות צייתנות, הבטחת מגורים של נתונים, ועמידה בתקנים רגולטוריים מחמירים.
מאמר זה צולל לעומק אסטרטגיות הנדסת פרומפט המאפשרות למודלים גדולים של שפות להפיק תשובות מדויקות, עקביות וניתנות לביקורת עבור שאלוני אבטחה. הקוראים ילמדו כיצד לעצב פרומפטים, לשלב הקשר מדיניות, לאמת תוצאות, ולשלב את זרימת העבודה בפלטפורמות כמו Procurize לתשובות ציות מהירות וללא שגיאות.
מאמר זה חוקר את האסטרטגיה של התאמת מודלים גדולים של שפה על נתוני ציות ספציפיים לתעשייה במטרה לאוטומט תשובות לשאלונים בטחוניים, לצמצם מאמץ ידני ולשמור על אפשרות ביקורת בפלטפורמות כגון Procurize.
מאמר זה חוקר את הגישה המתפתחת של AI רב‑מודלי המאפשרת חילוץ אוטומטי של ראיות טקסטואליות, חזותיות וקוד ממסמכים מגוונים, ומזרז את השלמת שאלונים בטחוניים תוך שמירה על ציות ובדיקה.
