ארגונים מתקשים לשמור על תשובות לשאלוני אבטחה תואמות למדיניות הפנימית המתפתחת במהירות ולרגולציות החיצוניות. מאמר זה מציג מנוע חדשני לגילוי מתמשך של סטייה במדיניות, המופעל בעזרת בינה מלאכותית ומשולב בפלטפורמת Procurize. על‑ידי ניטור מאגרי מדיניות, זרמי רגולציה, ופריטי הוכחה בזמן אמת, המנוע מזהיר צוותים על חוסר התאמה, מציע עדכונים אוטומטיים, ומבטיח שכל תשובה לשאלון משקפת את המצב התאומי העדכני ביותר.
מאמר זה מסביר את קונספט גרף הידע המתוזמן ב‑AI המאחד מדיניות, ראיות ונתוני ספקים למנוע בזמן אמת. על‑ידי שילוב קישוריות גרפית סֶמָנטית, יצירת‑תשובה משולבת‑שחזור (RAG) ותזמור מונע‑אירועים, צוותי אבטחה יכולים לענות על שאלונים מורכבים מיידית, לשמור על עקבות מבוקרות ולשפר באופן רציף את עמדת הציות.
מאמר זה חוקר ארכיטקטורה חדשנית המשלבת עקרונות Zero Trust עם גרף ידע פדרלי כדי לאפשר אוטומציה בטוחה של שאלונים אבטחתיים במצב מרובה שוכרים. תגלו את זרימת הנתונים, הבטוחות הפרטיות, נקודות האינטגרציה של AI, והצעדים המעשיים ליישום הפתרון בפלטפורמת Procurize.
תהליכי מענה ידני לשאלוני אבטחה הם איטיים, רגישים לטעויות ולעיתים מבודדים. מאמר זה מציג ארכיטקטורה של גרף ידע פדרלי שמגן על פרטיות, המאפשרת לחברות מרובות לשתף תובנות ציות בצורה מאובטחת, לשפר את דיוק המענה ולצמצם זמני תגובה – והכול תוך שמירה על תקנות פרטיות הנתונים.
מאמר זה מציג מנוע גרף ידע שיתופי בזמן אמת החדש שמאחד צוותי אבטחה, משפט ו‑product סביב מקור אמיתּי יחיד. על‑ידי שילוב של בינה מלאכותית גנרטיבית, גילוי סטיות במדיניות ובקרת גישה מדוקדקת, הפלטפורמה מעדכנת תשובות אוטומטית, מציגה ראיות חסרות, וסינכרון מיידי של שינויי כל השאלונים הממתינים, וקיצוץ זמן התגובה עד 80 %.
