גלו כיצד ליצור כרטיס ציון ציות חי שמאסף תשובות משאלונים אבטחתיים, מעשיר אותן באמצעות ייצור משולב עם אחזור, ומציג סיכון וכיסוי בזמן אמת בעזרת דיאגרמות Mermaid ותובנות מונעות בינה מלאכותית. מדריך זה מציג ארכיטקטורה, זרימת נתונים, תכנון פרומפטים, ופרקטיקות מומלצות להרחבת הפתרון ב‑Procurize.
מאמר זה חוקר גישה חדשה לאוטומציה של שאלוני אבטחה: לוח מחווני מקור ראיות אינטראקטיבי בעיצוב מרמיד. על‑ידי שילוב תשובות שנוצרו ב‑AI עם ויזואליזציה חיה של גרף ידע, הצוותים מקבלים תובנות מיידיות על מקור כל ראייה, כיצד היא מתפתחת, ומי מאשר אותה — מה שמפחית חיכוכים בביקורת, משפר את הביטחון בתואמות, ומאיץ החלטות סיכון ספקים.
מאמר זה חוקר ארכיטקטורה חדשה שמצמיחה יחד תּפוקה‑מוגברת‑ב‑אחזור (RAG), מחזורי משוב‑פרומפט, ורשתות נוירונים גרפיות (GNN) כדי לאפשר לגרפים של ידע ציות להשתנות באופן אוטומטי. על‑ידי סגירת הלולאה בין תשובות לשאלונים, תוצאות ביקורת, ומשובים מ‑AI, ארגונים יכולים לשמור על ראיות האבטחה והרגולציה מעודכנות, להפחית מאמץ ידני, ולשפר את הרמה של אמון בביקורות.
מאמר זה חוקר גישה חדשנית המשולבת בלמידה פדרטיבית עם גרף ידע שמגן על פרטיות לשיפור תהליך אוטומציית שאלוני האבטחה. על‑ידי שיתוף בטוח של תובנות בין ארגונים מבלי לחשוף נתונים גולמיים, הצוותים משיגים תשובות מדויקות ומהירות יותר תוך שמירה על סודיות ועמידה בתקנות.
מאמר זה חוקר את העיצוב וההשפעה של מחולל נרטיב מבוסס AI היוצר תשובות ציות בזמן אמת, מודעות למדיניות. הוא מכסה את גרף הידע הבסיסי, ניהול מודלי LLM, תבניות אינטגרציה, שיקולי אבטחה, ומפת דרכים עתידית, ומדגים מדוע טכנולוגיה זו משנה את המשחק עבור ספקי SaaS מודרניים.
