מאמר זה חוקר גישה חדשנית המשולבת בלמידה פדרטיבית עם גרף ידע שמגן על פרטיות לשיפור תהליך אוטומציית שאלוני האבטחה. על‑ידי שיתוף בטוח של תובנות בין ארגונים מבלי לחשוף נתונים גולמיים, הצוותים משיגים תשובות מדויקות ומהירות יותר תוך שמירה על סודיות ועמידה בתקנות.
מאמר זה חוקר כיצד למידה פדרלית המגנה על פרטיות יכולה לשנות את האוטומציה של שאלוני האבטחה, ולאפשר למספר ארגונים לאמן מודלי בינה מלאכותית במשותף מבלי לחשוף נתונים רגישים, ובכך להאיץ את הציות ולהפחית מאמץ ידני.
גלו כיצד מאמן IA מוסבר יכול לשנות את הדרך שבה צוותי האבטחה מתמודדים עם שאלוני ספקים. על‑ידי שילוב של מודלי שיחה (LLM), שליפת ראיות בזמן אמת, דירוג בטחון, והצגת נימוקים שקופים, המאמן מקצר את זמן המענה, משפר את דיוק התשובות, ומשאיר את הביקורות ניתנות לביקורת.
מאמר זה חוקר גישה חדשנית המונעת ב‑AI ליצירת פרסונות התנהגותיות מתוך נתוני פעילות צוות, המאפשרת התאמה אישית אוטומטית של תשובות לשאלוני אבטחה, מצמצמת מאמץ ידני ומשפרת את דיוק העמידות.
שאלוני אבטחה דורשים לעתים קרובות הפניות מדוייקות לתנאי חוזה, מדיניות או תקנים. חיפוש ידני הוא רגיש לטעויות ואיטי, במיוחד כאשר החוזים מתעדכנים. מאמר זה מציג מנוע מיפוי תנאי חוזה דינמי (Dynamic Contractual Clause Mapping) מבוסס AI שכלול במערכת Procurize. באמצעות שילוב של Retrieval‑Augmented Generation, גרפים סמנטיים של ידע ולד נפשי מוסבר, הפתרון מקשר באופן אוטומטי פריטי שאלון לשפה המדויקת בחוזה, מסתגל בזמן אמת לשינויים בתנאים ומספק למבקרים מסלול ביקורת בלתי ניתן לשינוי – ללא צורך בתיוג ידני.
