יום רביעי, 11 בפברואר 2026

בסביבה שבה ספקים מתמודדים עם עשרות שאלוני אבטחה ממסגרות כגון SOC 2, ISO 27001, GDPR ו‑CCPA, יצירת ראיות מדויקות, מודעות להקשר ובזמן קצר היא צוואר בקבוק משמעותי. מאמר זה מציג ארכיטקטורה של בינה מלאכותית גנרטיבית מונחית אונטולוגיה שממירה מסמכי מדיניות, חפצי שליטה ורשומות אירועים לקטעי ראייה מותאמים לכל שאלה רגולטורית. על ידי חיבור גרף ידע ספציפי לתחום עם מודלי שפה גדולים המהנדסים בקפידה, צוותי האבטחה משיגים תגובות בזמן אמת, ניתנות לביקורת, תוך שמירה על שלמות הציות והפחתת זמן המענה באופן דרסטי.

שבת, 11 באוקטובר 2025

מאמר זה צולל לעומק אסטרטגיות הנדסת פרומפט המאפשרות למודלים גדולים של שפות להפיק תשובות מדויקות, עקביות וניתנות לביקורת עבור שאלוני אבטחה. הקוראים ילמדו כיצד לעצב פרומפטים, לשלב הקשר מדיניות, לאמת תוצאות, ולשלב את זרימת העבודה בפלטפורמות כמו Procurize לתשובות ציות מהירות וללא שגיאות.

יום שלישי, 14 באוקטובר 2025

בסביבות SaaS מודרניות, איסוף ראיות ביקורת הוא אחד המשימות הגוזלות זמן ביותר עבור צוותי האבטחה והעמידה בתקנים. מאמר זה מסביר כיצד בינה מלאכותית גנרטיבית יכולה להפוך טלמטריית מערכת גולמית לאובייקטי ראיות מוכנים לשימוש — כגון קטעי יומן, תמונות מצב של קונפיגורציה, וצילומי מסך — ללא התערבות אנושית. על‑ידי אינטגרציה של צינורות מונעי‑בינה מלאכותית עם ערימות ניטור קיימות, ארגונים משיגים “ייצור ראיות באפס‑מגע”, מאצים תגובות לשאלונים ושומרים על מצב עמידה המתעדכן באופן רציף.

למעלה
בחר שפה