יום שישי, 10 באוקטובר 2025

מאמר זה חוקר כיצד למידה פדרלית המגנה על פרטיות יכולה לשנות את האוטומציה של שאלוני האבטחה, ולאפשר למספר ארגונים לאמן מודלי בינה מלאכותית במשותף מבלי לחשוף נתונים רגישים, ובכך להאיץ את הציות ולהפחית מאמץ ידני.

יום חמישי, 4 בדצמבר 2025

מאמר זה חוקר את העיצוב והיישום של מאגר בלתי ניתן לשינוי המתעד ראיות של שאלוני AI. על‑ידי שילוב של גיבובים קריפטוגרפיים בסגנון בלוקצ׳יין, עצי מרקל, ו‑Retrieval‑Augmented Generation, ארגונים יכולים להבטיח מסלולי ביקורת חסיני זיוף, לעמוד בדרישות רגולטוריות, ולהגביר את אמון בעלי העניין בתהליכי התאמה אוטומטיים.

יום רביעי, 2025-11-26

גלו כיצד מאמן IA מוסבר יכול לשנות את הדרך שבה צוותי האבטחה מתמודדים עם שאלוני ספקים. על‑ידי שילוב של מודלי שיחה (LLM), שליפת ראיות בזמן אמת, דירוג בטחון, והצגת נימוקים שקופים, המאמן מקצר את זמן המענה, משפר את דיוק התשובות, ומשאיר את הביקורות ניתנות לביקורת.

יום רביעי, 29 באוקטובר 2025

מאמר זה מציג מאמן שיחה דינמי ב‑AI חדש שנועד לעמוד לצד צוותי האבטחה והציות כאשר הם ממלאים שאלוני ספקים. על‑ידי שילוב של הבנת שפה טבעית, גרפים קונטקסטואליים של ידע ושליפה בזמן אמת של הוכחות, המאמן מקצר את זמן הטיפול, משפר את עקביות התשובות ויוצר מסלול דיאלוג ניתן לבחינה. המאמר מתאר את תחום הבעיה, הארכיטקטורה, שלבי היישום, שיטות העבודה הטובות והכיוונים העתידיים לארגונים המעוניינים לעדכן זרימות עבודה של שאלונים.

יום רביעי, 24 בדצמבר 2025

מאמר זה בוחן את מנוע ביקורת הטייה האתית של Procurize, מפרט את העיצוב, השילוב וההשפעה שלו על אספקת תשובות AI ללא הטייה ואמינות לשאלוני אבטחה, תוך חיזוק שלטון הציות.

למעלה
בחר שפה