यह लेख एक मॉड्यूलर, माइक्रो‑सेवा‑आधारित आर्किटेक्चर को समझाता है जो बड़े भाषा मॉडलों, रिट्रिवल‑ऑगमेंटेड जनरेशन और इवेंट‑ड्रिवन वर्कफ़्लो को मिलाकर उद्यम स्तर पर सुरक्षा प्रश्नावली के उत्तर को स्वचालित करता है। यह डिज़ाइन सिद्धांत, घटक इंटरैक्शन, सुरक्षा विचारों और आधुनिक क्लाउड प्लेटफ़ॉर्म पर इस स्टैक को लागू करने के व्यावहारिक चरणों को कवर करता है, जिससे अनुपालन टीमों को मैन्युअल प्रयास कम करने में मदद मिलती है जबकि ऑडिटेबिलिटी बनी रहती है।
यह लेख Procurize के AI प्लेटफ़ॉर्म में निर्मित सक्रिय‑सीखने के फीडबैक लूप की अवधारणा को समझाता है। मानव‑इन‑द‑लूप वैधता, अनिश्चितता सैंपलिंग, और गतिशील प्रॉम्प्ट अनुकूलन को मिलाकर कंपनियां सुरक्षा प्रश्नावली के LLM‑जनित उत्तरों को लगातार परिष्कृत कर सकती हैं, उच्च सटीकता प्राप्त कर सकती हैं, और अनुपालन चक्रों को तेज़ कर सकती हैं—साथ ही ऑडिट‑योग्य प्रामाणिकता बनाए रख सकती हैं।
