ეს სტატია განანკდება ახალ არქიტექტურაზე, რომელიც აერთიანებს გრაფიკულ ნერონული ქსელებს Procurize-ის AI პლატფორმასთან, რათა ავტომატურად მიმაგრირებდა მტკიცებულებებს კითხვარის ელემენტებზე, შექმნას დინამიკური ნდობის ქულები, და უზრუნველყოს შესაბამისობის პასუხების განახლება რეგულაციას შეიცავ ლანდშაფტებში. მკითხველებს ასწავლება მონაცემთა მოდელი, ინფერენციის ნაკადი, ინტეგრაციის წერტილები, და პრაქტიკული სარგებული უსაფრთხოების და იურიდიული გუნებისთვის.
ეს სტატია განისაზღვრება პასუხისმგებლური AI‑მმართველობის აუცილებობას უსაფრთხოების კითხვარის რეალურ დროში ავტომატიზაციისას. მასში წარმოდგენილია პრაქტიული ჩარჩო, განხილულია რისკის შემცირების ტექნიკები, და მაჩვენებელია, როგორ சங்கრილდება policy‑as‑code, აუდიტის ტრეკები და ეთიკური კონტროლები, რათა AI‑ის მოწოდებული პასუხები იყოს სანდო, გამჭვანილი და გლობალურ რეგულაციებთან თავსებადი.
