ოთხშაბათი, დეკემბერი 10, 2025

ეს სტატია განიკითხავს ახალი მიდგომის—გადამართული სწავლისა და კონფიდენციალობის უზრუნველყოფილი ცოდნის გრაფის—ერთიანობას, რომელიც აერთიანებს უსაფრთხოების კითხვარის ავტომატიზაციას. უსაფრთხოების დეტალების უსაფრთხოების გაზიარებით ორგანიზაციებს შეუძლიათ სწრაფად და დაწესებულებით პასუხები, არგუმენტირებული მართებული კონფიდენციალობისა და რეგულაციებით შესაბამისობის შენარჩუნებით.

ორშაბათი, 20 ოქტომბერი, 2025

ეს სტატია ფარავს ახალ არქიტექტურას, რომელიც აკვანეთებს უსაფრთხოების კითხვარის პასუხებს და თანხმობის პოლიტიკებს შორის წილისაკლობას. პასუხის მონაცემების აღროვით, გაერთიანებული სწავლით (reinforcement‑learning) და რეალურ დროში კოდის‑განყოფილება (policy‑as‑code) რეპოციტარში განახლებით, ორგანიზაციებს შეუძლებათ შემცირდეს ხელით მუშაობის ღირებულება, გაუმჯობესდეს პასუხის სიზუსტე და თანხმობის არტეფაქტები მუდმივად იყოს სინქრონიზებული ბიზნესის რეალით.

პარასკევი, 21 ნოემბერი 2025

ეს სტატია წარმოუდგენია ადაპტიული მტკიცებულებების ატრიბუტის სისტემა, რომელიც განსახილრად აგებულია გრაფიკული ნერვული ქსელზე, აღწერს მისი არქიტექტურას, სამუშაო ნაკადის ინტეგრაციას, უსაფრთხოების უპირატესობასა და პრაქტიკულ ნაბიჯებს მისი გადამუშავებისთვის შესაბამისობის პლატფორმებზე, როგორიცაა Procurize.

ოთხშაბათი, 19ნოე, 2025

ეს სტატია განანკდება ახალ არქიტექტურაზე, რომელიც აერთიანებს გრაფიკულ ნერონული ქსელებს Procurize-ის AI პლატფორმასთან, რათა ავტომატურად მიმაგრირებდა მტკიცებულებებს კითხვარის ელემენტებზე, შექმნას დინამიკური ნდობის ქულები, და უზრუნველყოს შესაბამისობის პასუხების განახლება რეგულაციას შეიცავ ლანდშაფტებში. მკითხველებს ასწავლება მონაცემთა მოდელი, ინფერენციის ნაკადი, ინტეგრაციის წერტილები, და პრაქტიკული სარგებული უსაფრთხოების და იურიდიული გუნებისთვის.

ორშაბათი, 17 ნოემბერი 2025
კატეგორიები: AI Compliance Security Automation Knowledge Graphs

ეს სტატია ასახავს ახალ მიდგომას AI‑ით შექმნილი პასუხის ნდობის დინამიკულ შეფასებაზე უსაფრთხოების კითხვარზე, მოხსენებით რეალურ‑დროის მტკიცებულებების გამოხმაურებას, ცოდნის გრაფებსა და LLM‑ისორეკესტრაციას, რათა გაუმჯობესდეს სისწორე და აუდიტირებადობა.

ზემოთ
აირჩიეთ ენა