თანამედროვე SaaS‑კომპანიებმა ეხმარებიან სტატიკური უსაფრთხოების გამოკითხვებს, რომლებიც კი vendor‑ის განვითარებით ირთქნება. ეს არტიკლი წარმოშობს AI‑მართებულ მუდმივად კალიბრაციის სისტემას, რომელიც იღებს vendor‑ის რეალურ‑დროის შეფასებებს, განახორციელებს პასუხების შაბლონში, და იზრდებს სისწორეში — შედეგად უფრო სწრაფი, საიმედო შესაბამისი პასუხები, ნაკლები მანუალური შრომა.
სოციალურ სამყაროში, სადაც vendor‑ის რისკი რამდენიმე წუთის განმავლობაში შეიძლება შეიცვალოს, სტატიკური რისკის ქულები სწრაფად უძველედ გადადის. ეს სტატია აბრუნებს AI‑ის მხარდაჭერით ფუნქციონირებულ მუდმივ ნდობის ქულის კალიბრაციის სისტემას, რომელიც რეალურ‑დროში გამოიყურება ქცევის სიგნალებს, რეგულაციული განახლებებსა და მტკიცებულებების პროვენანსას, რათა vendor‑ის რისკის ქულები განახლებული იყოს დროზე. ჩვენ გავიხილავთ არქიტექტურას, ცოდნის გრაფებს, გენერაციული AI‑ის მეშვეობით მტკიცებულებების სინთეზს და პრაქტიკულ ნაბიჯებს, რომ მოდული შეერთებულიყო არსებული საერთო თანამშრომლების პროცესებთან.
