이 문서는 대형 언어 모델(Large Language Model)로 구동되는 컨텍스트 기반 내러티브 엔진이 원시 컴플라이언스 데이터를 명확하고 감사를 준비할 수 있는 답변으로 변환하면서 정확성을 유지하고 수동 작업을 감소시키는 방법을 설명합니다.
이 문서는 대형 언어 모델과 동적 지식 그래프를 결합하여 보안 설문지에 가장 관련성 높은 증거를 자동으로 추천함으로써 정확성과 속도를 향상시키는 새로운 AI 기반 엔진을 탐구합니다.
현대 SaaS 환경에서 보안 설문지는 병목 현상이 됩니다. 이 글에서는 새로운 설문 데이터가 도착할 때마다 KG를 지속적으로 다듬는 새로운 접근법인 **자기 지도형 지식 그래프(KG) 진화**에 대해 설명합니다. 패턴 마이닝, 대비 학습, 실시간 위험 히트맵을 활용함으로써 조직은 정확하고 규정 준수적인 답변을 자동으로 생성하면서 증거 출처를 투명하게 유지할 수 있습니다.
이 기사에서는 보안 및 규정 준수 설문지를 위한 동적 질문 은행을 지속적으로 생성하고 개선하는 새로운 AI 기반 접근 방식을 공개합니다. 규제 인텔리전스, 대형 언어 모델, 피드백 루프를 결합함으로써 조직은 최신 상황을 반영한 질문으로 설문지를 자동 채우게 하여 응답 시간을 크게 단축하고 수작업을 줄이며 감사 정확성을 향상시킬 수 있습니다.
Procurize는 설문 상호작용, 규제 업데이트 및 증거 출처로부터 지속적으로 학습하는 자체 조직 지식 그래프 엔진을 도입했습니다. 이 글에서는 아키텍처, 이점 및 구현 단계를 깊이 있게 살펴보며, 응답 지연 시간을 감소시키고, 컴플라이언스 정확성을 향상시키며, 멀티‑테넌트 환경 전반에 걸쳐 확장 가능한 적응형 AI 기반 설문 자동화 플랫폼 구축 방법을 소개합니다.
