การสำรวจเชิงลึกของเอ็นจิน AI ที่เปรียบเทียบการแก้ไขนโยบายโดยอัตโนมัติ ประเมินผลต่อการตอบแบบสอบถามความปลอดภัย และแสดงผลกระทบเพื่อให้รอบการปฏิบัติตามกฎระเบียบเร็วขึ้น
บทความนี้อธิบายการทำงานร่วมกันระหว่าง policy‑as‑code กับโมเดลภาษาใหญ่ (LLM) แสดงให้เห็นว่าการสร้างโค้ดการปฏิบัติตามอัตโนมัติสามารถเร่งการตอบแบบสอบถามด้านความปลอดภัย ลดความพยายามของมนุษย์ และรักษาความแม่นยำระดับการตรวจสอบได้อย่างไร
บทความนี้เปิดตัวเครื่องมือใหม่ที่ขับเคลื่อนด้วย AI ซึ่งสามารถแมปนโยบายข้ามกรอบกฎระเบียบหลายชุดโดยอัตโนมัติ เพิ่มคำตอบด้วยหลักฐานเชิงบริบท และบันทึกการอ้างอิงทั้งหมดลงในบัญชีแยกประเภทที่ไม่สามารถเปลี่ยนแปลงได้ โดยการผสานโมเดลภาษาใหญ่, กราฟความรู้แบบไดนามิก, และบันทึกตรวจสอบสไตล์บล็อกเชน ทีมความปลอดภัยสามารถส่งมอบการตอบแบบสอบถามที่สอดคล้องกันอย่างรวดเร็ว พร้อมการติดตามที่ครบถ้วน
