2025年11月22日 星期六

本文探讨一种全新的 AI 驱动编排引擎,统一问卷管理、实时证据合成和动态路由,实现更快、更准的供应商合规响应,同时最大程度减少人工工作量。

星期一,2025年12月1日

本文探讨了 Procurize 如何利用联邦学习创建一个协作的、隐私保护的合规知识库。通过在跨企业分布式数据上训练 AI 模型,组织可以提升问卷答案的准确性、加快响应速度,并在受益于集体智能的同时保持数据主权。

2025年11月26日,星期三

采购和安全团队常因证据陈旧、问卷答案不一致而苦恼。本文阐述了 Procurize AI 如何借助检索增强生成(RAG)技术的持续刷新知识图谱,实现答案的即时更新与验证,从而大幅降低人工工作量并提升准确性与审计可追溯性。

2025年12月9日 星期二

本文探讨一种新颖架构,将零信任原则与联邦知识图谱相结合,实现安全的多租户安全问卷自动化。您将了解数据流、隐私保证、AI 接入点以及在 Procurize 平台上实施此解决方案的实操步骤。

星期二, 2025年12月16日

本文探讨一种新颖架构,结合跨语言嵌入、联邦学习和检索增强生成,以融合多语言知识图谱。该系统能够自动统一各地区的安全与合规问卷,降低人工翻译工作量,提高答案一致性,并为全球 SaaS 提供商实现实时、可审计的响应。

到顶部
选择语言